Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Biochem Biophys Res Commun ; 692: 149360, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38081108

BACKGROUND: Myocardial infarction (MI) dramatically changes the mechanical stress, which is intensified by the fibrotic remodeling. Integrins, especially the αV subunit, mediate mechanical signal and mechanoparacrine of transforming growth factor ß1 (TGF-ß1) in various organ fibrosis by activating CFs into myofibroblasts (MFBs). We investigated a possible role of integrin αV mediated mechanoparacrine of TGF-ß1 in MFBs activation for fibrous reparation in mice with MI. METHODS: Heart samples from MI, sham, or MI plus cilengitide (14 mg/kg, specific integrin αV inhibitor) treated mice, underwent functional and morphological assessments by echocardiography, and histochemistry on 7, 14 and 28 days post-surgery. The mechanical and ultrastructural changes of the fibrous scar were further evaluated by atomic mechanics microscope (AFM), immunofluorescence, second harmonic generation (SHG) imaging, polarized light and scanning electron microscope, respectively. Hydroxyproline assay was used for total collagen content, and western blot for protein expression profile examination. Fibroblast bioactivities, including cell shape, number, Smad2/3 signal and expression of extracellular matrix (ECM) related proteins, were further evaluated by microscopic observation and immunofluorescence in polyacrylamide (PA) hydrogel with adjustable stiffness, which was re-explored in fibroblast cultured on stiff matrix after silencing of integrin αV. The content of total and free TGF-ß1 was tested by enzyme-linked immunosorbent assay (ELISA) in both infarcted tissue and cell samples. RESULT: Increased stiffness with heterogeneity synchronized with integrin αV and alpha smooth muscle actin (α-SMA) positive MFBs accumulation in those less mature fibrous areas. Cilengitide abruptly reduced collagen content and disrupted collagen alignment, which also decreased TGF-ß1 bioavailability, Smad2/3 phosphorylation, and α-SMA expression in the fibrous area. Accordingly, fibroblast on stiff but not soft matrix exhibited obvious MFB phenotype, as evidenced by enlarged cell, hyperproliferation, well-developed α-SMA fibers, and elevated ECM related proteins, while silencing of integrin αV almost abolished this switch via attenuating paracrine of TGF-ß1 and nuclear translocation of Smad2/3. CONCLUSION: This study illustrated that increased tissue stiffness activates CFs into MFBs by integrin αV mediated mechanoparacrine of TGF-ß1, especially in immature scar area, which ultimately promotes fibrous scar maturation.


Myocardial Infarction , Myofibroblasts , Animals , Mice , Actins/metabolism , Cicatrix/metabolism , Collagen/metabolism , Extracellular Matrix Proteins/metabolism , Fibroblasts/metabolism , Fibrosis , Integrin alphaV/metabolism , Myocardial Infarction/pathology , Myofibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism
2.
Hum Cell ; 32(4): 403-410, 2019 Oct.
Article En | MEDLINE | ID: mdl-31278688

Liver fibrosis, a common pathological process in chronic liver diseases, is characterized by excessive accumulation of extracellular matrix proteins and considered as a wound healing response to chronic liver injury. Hepatic stellate cell (HSC) activation plays a key role in liver fibrosis development. Previous studies showed that sulforaphane (SFN) has wide protective effects against tissue injury and inflammation. Accumulating evidence has shown that microRNAs play important roles in the development of hepatic fibrosis, some of which have been identified as potential therapeutic targets. This study was conducted to explore the role of SFN in the suppression of HSC activation. Quantitative real-time PCR showed that HSC miR-423-5p levels were up-regulated during HSC activation and down-regulated after SFN administration. Further, transfection of a miR-423-5p mimic demonstrated that inhibition of HSC activation by SFN required down-regulation of miR-423-5p. We showed that suppressor of fused is the direct target of miR-423-5p. SFN may play a role in inhibiting hepatic fibrosis by downregulating miRNA-423-5p. MiRNA-423-5p may be useful as a therapeutic target for treating hepatic fibrosis.


Cell Survival/drug effects , Cell Survival/genetics , Hepatic Stellate Cells/physiology , Isothiocyanates/pharmacology , Liver Cirrhosis/etiology , Liver Cirrhosis/genetics , MicroRNAs/metabolism , Cell Line , Depression, Chemical , Down-Regulation/drug effects , Humans , Isothiocyanates/therapeutic use , Liver Cirrhosis/drug therapy , MicroRNAs/genetics , Molecular Targeted Therapy , Sulfoxides
...